Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 597
Filtrar
1.
Sci Rep ; 14(1): 9440, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658799

RESUMEN

Although previous studies have examined the signaling pathway involved in melanogenesis through which ultraviolet (UV) or α-melanocyte-stimulating hormones (α-MSH) stimuli act as key inducers to produce melanin at the stratum basal layer of the epidermis, the signaling pathway regulating melanogenesis is still controversial. This study reports that α-MSH, not UVA and UVB, acted as a major stimulus of melanogenesis in B16F10 melanoma cells. Signaling pathway analysis using gene knockdown technology and chemical inhibitors, the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)/p90 ribosomal S6 kinase 2 (RSK2) played an important role in melanogenesis. Unexpectedly, LY294002, a PI3K inhibitor, increased melanogenesis without UV or α-MSH stimulation, suggesting that the PI3K/AKT signaling pathway may not be a major signaling pathway for melanogenesis. Chemical inhibition of the MEKs/ERKs/RSK2 signaling pathway using U0126 or BI-D1870 suppressed melanogenesis by stimulation of UVA or α-MSH stimulation, or both. In particular, the genetic depletion of RSK2 or constitutive active (CA)-RSK2 overexpression showed that RSK2 plays a key role in melanogenesis. Interestingly, forkhead box protein O4 (FOXO4) was phosphorylated by RSK2, resulting in the increase of FOXO4's transactivation activity. Notably, the FOXO4 mutant harboring serine-to-alanine replacement at the phosphorylation sites totally abrogated the transactivation activity and reduced melanin production, indicating that RSK2-mediated FOXO4 activity plays a key role in melanogenesis. Furthermore, kaempferol, a flavonoid inhibiting the RSK2 activity, suppressed melanogenesis. In addition, FOXO4-wt overexpression showed that FOXO4 enhance melanin synthesis. Overall, the RSK2-FOXO4 signaling pathway plays a key role in modulating melanogenesis.


Asunto(s)
Melaninas , Pteridinas , Proteínas Quinasas S6 Ribosómicas 90-kDa , Transducción de Señal , alfa-MSH , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Melaninas/biosíntesis , Melaninas/metabolismo , Animales , alfa-MSH/metabolismo , alfa-MSH/farmacología , Ratones , Línea Celular Tumoral , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Rayos Ultravioleta , Morfolinas/farmacología , Cromonas/farmacología , Nitrilos/farmacología , Butadienos/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Melanoma Experimental/metabolismo , Melanogénesis
2.
J Microbiol Biotechnol ; 34(4): 949-957, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38480002

RESUMEN

There has been a growing interest in skin beauty and antimelanogenic products. Melanogenesis is the process of melanin synthesis whereby melanocytes are activated by UV light or hormone stimulation to produce melanin. Melanogenesis is mediated by several enzymes, such as tyrosinase (TYR), microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1 (TRP-1), and TRP-2. In this study, we investigated the effect of Tuber himalayense extract on melanin synthesis in α-melanocyte-stimulating hormone (α-MSH)-treated B16F10 melanoma cells. We confirmed that T. himalayense extract was not toxic to α-MSH-treated B16F10 melanoma cells and exhibited a significant inhibitory effect on melanin synthesis at concentrations of 25, 50, and 100 µg/ml. Additionally, the T. himalayense extract inhibited melanin, TRP-1, TRP-2, tyrosinase, and MITF, which are enzymes involved in melanin synthesis, in a concentration-dependent manner. Furthermore, T. himalayense extract inhibited the mitogen-activated protein kinase (MAPK) pathways, such as extracellular signal-regulated kinase-1/2 (ERK), c-Jun N-terminal kinase (JNK), and p38. Therefore, we hypothesized that various components of T. himalayense extract affect multiple factors involved in melanogenesis in B16F10 cells. Our results indicate that T. himalayense extract could potentially be used as a new material for preparing whitening cosmetics.


Asunto(s)
Melaninas , Factor de Transcripción Asociado a Microftalmía , Monofenol Monooxigenasa , Extractos Vegetales , Melaninas/biosíntesis , Melaninas/metabolismo , Animales , Ratones , Extractos Vegetales/farmacología , Extractos Vegetales/química , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Línea Celular Tumoral , República de Corea , Factor de Transcripción Asociado a Microftalmía/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Oxidorreductasas Intramoleculares/metabolismo , alfa-MSH/farmacología , alfa-MSH/metabolismo , Melanoma Experimental/metabolismo , Oxidorreductasas/metabolismo , Tubérculos de la Planta/química , Glicoproteínas de Membrana/metabolismo , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo , Supervivencia Celular/efectos de los fármacos
3.
Int J Biol Sci ; 20(5): 1688-1704, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481807

RESUMEN

Background: Melanocortin 1 receptor (MC1R), a receptor of α-melanocyte-stimulating hormone (α-MSH), is exclusively present in melanocytes where α-MSH/MC1R stimulate melanin pigmentation through microphthalmia-associated transcription factor M (MITF-M). Toll-like receptor 4 (TLR4), a receptor of endotoxin lipopolysaccharide (LPS), is distributed in immune and other cell types including melanocytes where LPS/TLR4 activate transcriptional activity of nuclear factor (NF)-κB to express cytokines in innate immunity. LPS/TLR4 also up-regulate MITF-M-target melanogenic genes in melanocytes. Here, we propose a molecular target of antimelanogenic activity through elucidating inhibitory mechanism on α-MSH-induced melanogenic programs by benzimidazole-2-butanol (BI2B), an inhibitor of LPS/TLR4-activated transcriptional activity of NF-κB. Methods: Ultraviolet B (UV-B)-irradiated skins of HRM-2 hairless mice and α-MSH-activated melanocyte cultures were employed to examine melanogenic programs. Results: Topical treatment with BI2B ameliorated UV-B-irradiated skin hyperpigmentation in mice. BI2B suppressed the protein or mRNA levels of melanogenic markers, such as tyrosinase (TYR), MITF-M and proopiomelanocortin (POMC), in UV-B-exposed and pigmented skin tissues. Moreover, BI2B inhibited melanin pigmentation in UV-B-irradiated co-cultures of keratinocyte and melanocyte cells and that in α-MSH-activated melanocyte cultures. Mechanistically, BI2B inhibited the activation of cAMP response element-binding protein (CREB) in α-MSH-induced melanogenic programs and suppressed the expression of MITF-M at the promoter level. As a molecular target, BI2B primarily inhibited mitogen-activated protein kinase (MAPK) kinase 3 (MKK3)-catalyzed kinase activity on p38MAPK. Subsequently, BI2B interrupted downstream pathway of p38MAPK-mitogen and stress-activated protein kinase-1 (MSK1)-CREB-MITF-M, and suppressed MITF-M-target melanogenic genes, encoding enzymes TYR, TYR-related protein-1 (TRP-1) and dopachrome tautomerase (DCT) in melanin biosynthesis, and encoding proteins PMEL17 and Rab27A in the transfer of pigmented melanosomes to the overlaying keratinocytes in the skin. Conclusion: Targeting the MKK3-p38MAPK-MSK1-CREB-MITF-M pathway was suggested as a rationale to inhibit UV-B- or α-MSH-induced facultative melanogenesis and as a strategy to prevent acquired pigmentary disorders in the skin.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Hiperpigmentación , Animales , Ratones , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Melaninas/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , alfa-MSH/farmacología , alfa-MSH/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Lipopolisacáridos/toxicidad , Melanocitos/metabolismo , Hiperpigmentación/tratamiento farmacológico , Hiperpigmentación/metabolismo , Monofenol Monooxigenasa/metabolismo , Línea Celular Tumoral
4.
Cell Commun Signal ; 22(1): 151, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38408981

RESUMEN

BACKGROUND: Coenzyme Q0 (CoQ0), a novel quinone derivative of Antrodia camphorata, has been utilized as a therapeutic agent (including antioxidant, anti-inflammatory, antiangiogenic, antiatherosclerotic, and anticancer agents); however, its depigmenting efficiency has yet to be studied. METHODS: We resolved the depigmenting efficiency of CoQ0 through autophagy induction in melanoma (B16F10) and melanin-feeding keratinocyte (HaCaT) cells and in vivo Zebrafish model. Then, MPLC/HPLC analysis, MTT assay, Western blotting, immunofluorescence staining, LC3 transfection, melanin formation, GFP-LC3 puncta, AVO formation, tyrosinase activity, and TEM were used. RESULTS: CoQ0-induced autophagy in B16F10 cells was shown by enhanced LC3-II accumulation, ATG7 expression, autophagosome GFP-LC3 puncta, and AVOs formation, and ATG4B downregulation, and Beclin-1/Bcl-2 dysregulation. In α-MSH-stimulated B16F10 cells, CoQ0 induced antimelanogenesis by suppressing CREB-MITF pathway, tyrosinase expression/activity, and melanin formation via autophagy. TEM data disclosed that CoQ0 increased melanosome-engulfing autophagosomes and autolysosomes in α-MSH-stimulated B16F10 cells. CoQ0-inhibited melanogenesis in α-MSH-stimulated B16F10 cells was reversed by pretreatment with the autophagy inhibitor 3-MA or silencing of LC3. Additionally, CoQ0-induced autophagy in HaCaT cells was revealed by enhanced LC3-II accumulation, autophagosome GFP-LC3 puncta and AVO formation, ATG4B downregulation, ATG5/ATG7 expression, and Beclin-1/Bcl-2 dysregulation. In melanin-feeding HaCaT cells, CoQ0 induced melanin degradation by suppressing melanosome gp100 and melanin formation via autophagy. TEM confirmed that CoQ0 increased melanosome-engulfing autophagosomes and autolysosomes in melanin-feeding HaCaT cells. Treatment with 3-MA reversed CoQ0-mediated melanin degradation in melanin-feeding HaCaT cells. In vivo study showed that CoQ0 suppressed endogenous body pigmentation by antimelanogenesis and melanin degradation through autophagy induction in a zebrafish model. CONCLUSIONS: Our results showed that CoQ0 exerted antimelanogenesis and melanin degradation by inducing autophagy. CoQ0 could be used in skin-whitening formulations as a topical cosmetic application.


Asunto(s)
Benzoquinonas , Melaninas , Polyporales , Ubiquinona , Animales , Humanos , Ubiquinona/farmacología , Ubiquinona/metabolismo , Melaninas/metabolismo , Pez Cebra/metabolismo , Monofenol Monooxigenasa/metabolismo , alfa-MSH/metabolismo , Beclina-1/metabolismo , Melanocitos/metabolismo , Queratinocitos/metabolismo , Autofagia , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Línea Celular Tumoral
5.
Phytomedicine ; 126: 155442, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38394730

RESUMEN

BACKGROUND: The pursuit for safe and efficacious skin-whitening agents has prompted a dedicated exploration of plant-derived compounds. Notably, Tagetes erecta L. flowers have been used as a medicinal extract and possessed in vitro mushroom tyrosinase activity. However, whether polyphenol-enriched fraction extracted from T. erecta L. flowers (TE) regulates melanogenesis within cellular and animal models has not yet been investigated. PURPOSE: This study aimed to investigate the effect of TE as a prospective inhibitor of melanogenesis. METHODS: Through advanced UPLC-QTof/MS analysis, the components of TE were analyzed. Anti-melanogenic effects of TE were evaluated in α-melanocyte-stimulating hormone (α-MSH)-stimulated B16F10 melanoma cells by measuring cell viability assay, extracellular and intracellular melanin biosynthesis, cyclic adenosine monophosphate (cAMP) production, and melanogenesis-related gene and protein expression. Zebrafish larvae were employed for in vivo studies, assessing both heart rate and melanogenesis. Furthermore, molecular docking analyses were employed to predict the interaction between TE components and the melanocortin 1 receptor (MC1R). Direct binding activity of TE components to MC1R was compared with [Nle4, d-Phe7]-MSH (NDP-MSH). RESULTS: TE was found to contain significant phenolic compounds such as patulitrin, quercetagetin, kaempferol, patuletin, and isorhamnetin. This study revealed that TE effectively inhibits melanin biosynthesis in both in vitro and in vivo models. This inhibition was attributed to interference of TE with the cAMP-cAMP response element-binding protein (CREB)-microphthalmia-associated transcription factor (MITF)-tyrosinase pathway, which plays a pivotal role in regulating melanogenesis. Importantly, TE exhibited the remarkable ability to curtail α-MSH-induced melanogenesis in zebrafish larvae without impacting heart rates. Molecular docking analyses predicted that the components of TE possibly interact with the melanocortin 1 receptor, suggesting their role as potential inhibitors of melanin biosynthesis. However, through the direct binding activity compared with NDP-MSH, any TE components did not directly bind to MC1R, suggesting that TE inhibits α-MSH-induced melanogenesis by inhibiting the cAMP-mediated intracellular signaling pathway. The assessment of anti-melanogenic activity, conducted both in vitro and in vivo, revealed that patulitrin and patuletin exhibited significant inhibitory effects on melanin formation, highlighting their potency as major contributors. DISCUSSION: This investigation demonstrated the considerable potential of TE as a natural remedy endowed with remarkable anti-melanogenic properties. The demonstrated capacity of TE to attenuate melanin production by modulating the cAMP-CREB-MITF-tyrosinase pathway underscores its central role in management of disorders associated with excessive pigmentation. Importantly, the implications of these findings extend to the cosmetics industry, where TE emerges as a prospective and valuable ingredient for the formulation of skin-whitening products. The elucidated interactions between TE components and MC1R not only provide insight into a potential mechanism of action but also elevate the significance of this study. In summary, this study not only contributes to our comprehension of pigmentation-related conditions but also firmly establishes TE as a secure and natural strategy for the regulation of melanin production. The innovative aspects of TE propel it into the forefront of potential interventions, marking a noteworthy advancement in the pursuit of effective and safe solutions for pigmentation disorders.


Asunto(s)
Melanoma Experimental , Tagetes , Animales , Melaninas , Monofenol Monooxigenasa/metabolismo , alfa-MSH/farmacología , alfa-MSH/metabolismo , Pez Cebra/metabolismo , Tagetes/metabolismo , Melanogénesis , Polifenoles/farmacología , Receptor de Melanocortina Tipo 1/metabolismo , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Factor de Transcripción Asociado a Microftalmía/metabolismo , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/metabolismo
6.
Chem Res Toxicol ; 37(2): 274-284, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38271289

RESUMEN

Cutaneous pigmentation is an important phenotypic trait whose regulation, despite recent advances, has yet to be completely elucidated. Melanogenesis, a physiological process of melanin production, is imperative for organism survival as it provides protection against the environmental insults that majorly involve sunlight-induced skin photodamage. However, immoderate melanin synthesis can cause pigmentation disorders associated with a psychosocial impact. In this study, the hypopigmentation effect of (2-methylbutyryl)shikonin, a natural product present in the root extract of Lithospermum erythrorhizon, and the underlying mechanisms responsible for the inhibition of melanin synthesis in α-MSH-stimulated B16F10 cells and C57BL/6J mice was studied. Non-cytotoxic concentrations of (2-methylbutyryl)shikonin significantly repressed cellular tyrosinase activity and melanin synthesis in both in vitro and in vivo models (C57BL/6J mice). (2-Methylbutyryl)shikonin remarkably abolished the protein expression of MITF, tyrosinase, tyrosinase-related protein 1, and tyrosinase-related protein 2, thereby blocking the production of pigment melanin via modulating the phosphorylation status of MAPK proteins, viz., ERK1/2 and p38. In addition, specific inhibition of ERK1/2 attenuated the inhibitory effects of (2-methylbutyryl)shikonin on melanin synthesis, whereas selective inhibition of p38 augmented the inhibitory effect of BSHK on melanin synthesis. Moreover, topical application of (2-methylbutyryl)shikonin on C57BL/6J mouse tails remarkably induced tail depigmentation. In conclusion, with these findings, we, for the first time, report the hypopigmentation effect of (2-methylbutyryl)shikonin via inhibition of cellular tyrosinase enzyme activity, subsequently ameliorating the melanin production, thereby indicating that (2-methylbutyryl)shikonin is a potential natural therapy for hyperpigmentation disorders.


Asunto(s)
Hipopigmentación , Melanoma Experimental , Naftoquinonas , Animales , Ratones , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Monofenol Monooxigenasa/genética , Monofenol Monooxigenasa/metabolismo , Regulación hacia Abajo , Factor de Transcripción Asociado a Microftalmía/metabolismo , Factor de Transcripción Asociado a Microftalmía/farmacología , alfa-MSH/farmacología , alfa-MSH/metabolismo , Transducción de Señal , Melanogénesis , Melaninas/metabolismo , Sistema de Señalización de MAP Quinasas , Línea Celular Tumoral , Ratones Endogámicos C57BL , Melanoma Experimental/tratamiento farmacológico
7.
Int J Biol Sci ; 20(1): 312-330, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38164184

RESUMEN

Background: The cAMP response element-binding protein (CREB) and CREB-regulated transcription coactivators (CRTCs) cooperate in the transcriptional activation of microphthalmia-associated transcription factor subtype M (MITF-M) that is a master regulator in the biogenesis, pigmentation and transfer of melanosomes at epidermal melanocytes. Here, we propose the targeting of phosphorylation circuits on CREB and CRTCs in the expression of MITF-M as the rationale to prevent skin hyperpigmentation by elucidating the inhibitory activity and mechanism of yakuchinone A (Yaku A) on facultative melanogenesis. Methods: We employed human epidermal melanocyte cell, mouse skin, and mouse melanoma cell, and applied Western blotting, reverse transcription-polymerase chain reaction, immunoprecipitation and confocal microscopy to conduct this study. Results: This study suggested that α-melanocyte stimulating hormone (α-MSH)-induced melanogenic programs could switch on the axis of protein kinase A-salt inducible kinases (PKA-SIKs) rather than that of PKA-AMP activated protein kinase (PKA-AMPK) during the dephosphorylation of CRTCs in the expression of MITF-M. SIK inhibitors rather than AMPK inhibitors stimulated melanin production in melanocyte cultures in the absence of extracellular melanogenic stimuli, wherein SIK inhibitors increased the dephosphorylation of CRTCs but bypassed the phosphorylation of CREB for the expression of MITF-M. Treatment with Yaku A prevented ultraviolet B (UV-B)-irradiated skin hyperpigmentation in mice and inhibited melanin production in α-MSH- or SIK inhibitor-activated melanocyte cultures. Mechanistically, Yaku A suppressed the expression of MITF-M via dually targeting the i) cAMP-dependent dissociation of PKA holoenzyme at the upstream from PKA-catalyzed phosphorylation of CREB coupled with PKA-SIKs axis-mediated dephosphorylation of CRTCs in α-MSH-induced melanogenic programs, and ii) nuclear import of CRTCs after SIK inhibitor-induced dephosphorylation of CRTCs. Conclusions: Taken together, the targeting phosphorylation circuits on CREB and CRTCs in the expression of MITF-M could be a suitable strategy to prevent pigmentary disorders in the skin.


Asunto(s)
Hiperpigmentación , Melaninas , Humanos , Animales , Ratones , Melaninas/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Fosforilación , alfa-MSH/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Melanocitos/metabolismo , Hiperpigmentación/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Línea Celular Tumoral
8.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37834109

RESUMEN

Melanogenesis, the intricate process of melanin synthesis, is central to skin pigmentation and photoprotection and is regulated by various signaling pathways and transcription factors. To develop potential skin-whitening agents, we used B16F1 melanoma cells to investigate the inhibitory effects of anhydrous alum on melanogenesis and its underlying molecular mechanisms. Anhydrous alum (KAl(SO4)2) with high purity (>99%), which is generated through the heat-treatment of hydrated alum (KAl(SO4)2·12H2O) at 400 °C, potentiates a significant reduction in melanin content without cytotoxicity. Anhydrous alum downregulates the master regulator of melanogenesis, microphthalmia-associated transcription factor (MITF), which targets key genes involved in melanogenesis, thereby inhibiting α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis. Phosphorylation of the cAMP response element-binding protein, which acts as a co-activator of MITF gene expression, is attenuated by anhydrous alum, resulting in compromised MITF transcription. Notably, anhydrous alum promoted extracellular signal-regulated kinase phosphorylation, leading to the impaired nuclear localization of MITF. Overall, these results demonstrated the generation and mode of action of anhydrous alum in B16F1 cells, which constitutes a promising option for cosmetic or therapeutic use.


Asunto(s)
Melaninas , alfa-MSH , Melaninas/metabolismo , alfa-MSH/metabolismo , Monofenol Monooxigenasa/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Línea Celular Tumoral
9.
Z Naturforsch C J Biosci ; 78(11-12): 399-407, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37703186

RESUMEN

Melanogenesis is the process where skin pigment melanin is produced through tyrosinase activity. Overproduction of melanin causes skin disorders such as freckles, spots, and hyperpigmentation. Myricetin 3-O-galactoside (M3G) is a dietary flavonoid with reported bioactivities. M3G was isolated from Limonium tetragonum and its anti-melanogenic properties were investigated in α-melanocyte stimulating hormone-stimulated B16F10 melanoma cells. The in vitro anti-melanogenic capacity of M3G was confirmed by inhibited tyrosinase and melanin production. M3G-mediated suppression of melanogenic proteins, tyrosinase, microphthalmia-associated transcription factor (MITF), and tyrosinase-related proteins (TRP)-1 and TRP-2, were confirmed by mRNA and protein levels, analyzed by RT-qPCR and Western blot, respectively. Furthermore, M3G suppressed Wnt signaling through the inhibition of PKA phosphorylation. M3G also suppressed the consequent phosphorylation of CREB and nuclear levels of MITF. Analysis of MAPK activation further revealed that M3G increased the activation of ERK1/2 while p38 and JNK activation remained unaffected. Results showed that M3G suppressed melanogenesis in B16F10 cells by decreasing tyrosinase production and therefore inhibiting melanin formation. A possible action mechanism was the suppression of CREB activation and upregulation of ERK phosphorylation which might cause the decreased nuclear levels of MITF. In conclusion, M3G was suggested to be a potential nutraceutical with anti-melanogenic properties.


Asunto(s)
Melanoma Experimental , Melanoma , Animales , Monofenol Monooxigenasa , Melaninas/metabolismo , Sistema de Señalización de MAP Quinasas , alfa-MSH/farmacología , alfa-MSH/metabolismo , Flavonoides/farmacología , Galactósidos , Melanoma Experimental/metabolismo , Línea Celular Tumoral
10.
Int J Mol Sci ; 24(13)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37446194

RESUMEN

Without affecting cell viability, epigallocatechin gallate (EGCG), gallocatechin gallate (GCG), theaflavine-3,3'-digallate (TFDG), or theasinensin A (TSA) have been found to effectively reduce intracellular melanin content and tyrosinase (TYR) activity. However, studies on the anti-melanogenic mechanism of the above samples remain weak, and the activities of these samples in regulating melanogenesis at the molecular level lack comparison. Using B16F10 cells with the α-melanocyte-stimulating hormone (α-MSH) stimulation and without the α-MSH stimulation as models, the effects of EGCG, GCG, TFDG, or TSA on cell phenotypes and expression of key targets related to melanogenesis were studied. The results showed that α-MSH always promoted melanogenesis with or without adding the four samples. Meanwhile, the anti-melanogenic activities of the four samples were not affected by whether the α-MSH was added in the medium or not and the added time of the α-MSH. On this basis, the 100 µg/mL EGCG, GCG, TFDG, or TSA did not affect the TYR catalytic activity but inhibited melanin formation partly through downregulating the melanocortin 1 receptor (MC1R), microphthalmia-associated transcription factor (MITF), and the TYR family. The downregulation abilities of catechins on the TYR family and MITF expression were stronger than those of dimers at both the transcription and translation levels, while the ability of dimers to downregulate the MC1R expression was stronger than that of catechins at both the transcription and translation levels to some extent. The results of molecular docking showed that these four samples could stably bind to MC1R protein. Taken together, this study offered molecular mechanisms for the anti-melanogenic activity of the EGCG, GCG, TFDG, and TSA, as potential effective components against the UV-induced tanning reactions, and a key target (MC1R) was identified.


Asunto(s)
Melaninas , Melanoma Experimental , Animales , Melaninas/metabolismo , alfa-MSH/farmacología , alfa-MSH/metabolismo , Receptor de Melanocortina Tipo 1/genética , Monofenol Monooxigenasa/metabolismo , Simulación del Acoplamiento Molecular , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Línea Celular Tumoral
11.
J Cosmet Dermatol ; 22(10): 2824-2830, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37288793

RESUMEN

BACKGROUND: Skin pigmentation is modulated by various processes, with melanogenesis playing a key role. Melanin is synthesized by the catalysis of melanogenesis-related enzymes, such as tyrosinase and tyrosine-related proteins TRP-1 and TRP-2. Paeoniflorin is the main bioactive component of Paeonia suffruticosa Andr., Paeonia lactiflora., or Paeonia veitchii Lynch and has been used for centuries for its anti-inflammatory, anti-oxidant, and anti-carcinogenic properties. AIMS & METHODS: In this study, melanin biosynthesis in mouse melanoma (B16F10) cells was induced using α-melanocyte-stimulating hormone (α-MSH), and then cells were co-treated with paeoniflorin to evaluate its potential anti-melanogenic effect. RESULTS: α-MSH stimulation increased melanin content, tyrosinase activity, and melanogenesis-related markers in a dose-dependent manner. However, treatment with paeoniflorin reversed α-MSH-induced upregulation of melanin content and tyrosinase activity. Furthermore, paeoniflorin inhibited cAMP response element-binding protein activation and TRP-1, TRP-2, and microphthalmia-associated transcription factor protein expression in α-MSH-stimulated B16F10 cells. CONCLUSION: Overall, these findings show the potential of paeoniflorin as a depigmenting agent for cosmetic products.


Asunto(s)
Melaninas , Paeonia , Animales , Ratones , Monofenol Monooxigenasa , alfa-MSH/farmacología , alfa-MSH/metabolismo , Transducción de Señal , Antioxidantes/farmacología
12.
Bioconjug Chem ; 34(5): 934-940, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37140963

RESUMEN

The purpose of this study was to evaluate the effect of linkers on tumor targeting and biodistribution of [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex {[99mTc]Tc(CO)3-1,4,7-triazacyclononane-1,4,7-triyl-triacetic acid-polyethylene glycol-Nle-c[Asp-His-d-Phe-Arg-Trp-Lys]-CONH2} and [99mTc]Tc(CO)3-NOTA-AocNle-CycMSHhex {[99mTc]Tc(CO)3-NOTA-8-aminooctanoic acid-Nle-CycMSHhex} on B16/F10 melanoma-bearing mice. NOTA-PEG2Nle-CycMSHhex and NOTA-AocNle-CycMSHhex were synthesized and radiolabeled with [99mTc]Tc via the {[99mTc]Tc(CO)3(OH2)3}+ intermediate. The biodistribution of [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex and [99mTc]Tc(CO)3-NOTA-AocNle-CycMSHhex was determined on B16/F10 melanoma-bearing C57 mice. The melanoma imaging property of [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex was determined on B16/F10 melanoma-bearing C57 mice. [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex and [99mTc]Tc(CO)3-NOTA-AocNle-CycMSHhex were readily prepared with more than 90% radiochemical yields and exhibited MC1R-specific binding on B16/F10 melanoma cells. [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex exhibited a higher tumor uptake than [99mTc]Tc(CO)3-NOTA-AocNle-CycMSHhex at 2, 4, and 24 h postinjection. The tumor uptake of [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex was 13.63 ± 1.13, 31.93 ± 2.57, 20.31 ± 3.23, and 1.33 ± 0.15% ID/g at 0.5, 2, 4, and 24 h postinjection, respectively. The tumor uptake of [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex was 1.6 and 3.4 times the tumor uptake of [99mTc]Tc(CO)3-NOTA-AocNle-CycMSHhex at 2 and 4 h postinjection, respectively. Meanwhile, the normal organ uptake of [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex was lower than 1.8% ID/g at 2 h postinjection. The renal uptake of [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex was only 1.73 ± 0.37, 0.73 ± 0.14, and 0.03 ± 0.01% ID/g at 2, 4, and 24 h postinjection, respectively. [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex showed high tumor to normal organ uptake ratios at 2 h postinjection. Single-photon emission computed tomography imaging revealed that the B16/F10 melanoma lesions could be clearly visualized by [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex at 2 h postinjection. Overall, the high tumor uptake and low kidney uptake of [99mTc]Tc(CO)3-NOTA-PEG2Nle-CycMSHhex highlighted its potential for melanoma imaging and warranted the future evaluation of [188Re]Re(CO)3-NOTA-PEG2Nle-CycMSHhex for melanoma therapy.


Asunto(s)
Lactamas , Melanoma Experimental , Animales , Ratones , Lactamas/química , alfa-MSH/química , alfa-MSH/metabolismo , Distribución Tisular , Melanoma Experimental/metabolismo , Tomografía Computarizada de Emisión de Fotón Único , Línea Celular Tumoral , Ratones Endogámicos C57BL , Radiofármacos/química
13.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108635

RESUMEN

Pearl powder is a famous traditional Chinese medicine that has a long history in treating palpitations, insomnia, convulsions, epilepsy, ulcers, and skin lightining. Recently, several studies have demonstrated the effects of pearl extracts on protection of ultraviolet A (UVA) induced irritation on human skin fibroblasts and inhibition of melanin genesis on B16F10 mouse melanoma cells. To further explore the effect we focused on the whitening efficacy of pearl hydrolyzed conchiolin protein (HCP) on human melanoma MNT-1 cells under the irritation of alpha-melanocyte-stimulating hormone (α-MSH) or endothelin 1 (ET-1) to evaluate the intracellular tyrosinase and melanin contents, as well as the expression levels of tyrosinase (TYR), tyrosinase related protein 1 (TRP-1), and dopachrome tautomerase (DCT) genes and related proteins. We found that HCP could decrease the intracellular melanin content by reducing the activity of intracellular tyrosinase and inhibiting the expression of TYR, TRP-1, DCT genes and proteins. At the same time, the effect of HCP on melanosome transfer effect was also investigated in the co-culture system of immortalized human keratinocyte HaCaT cells with MNT-1. The result indicated that HCP could promote the transfer of melanosomes in MNT-1 melanocytes to HaCaT cells, which might accelerate the skin whitening process by quickly transferring and metabolizing melanosomes during keratinocyte differentiation. Further study is needed to explore the mechanism of melanosome transfer with depigmentation.


Asunto(s)
Melanoma Experimental , Melanoma , Animales , Ratones , Humanos , Melaninas/metabolismo , alfa-MSH/farmacología , alfa-MSH/metabolismo , Monofenol Monooxigenasa/metabolismo , Endotelina-1/metabolismo , Línea Celular Tumoral , Melanocitos/metabolismo , Melanoma/metabolismo , Hidrolisados de Proteína/metabolismo , Melanoma Experimental/metabolismo
14.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37047130

RESUMEN

Anti-pigmentation peptides have been developed as alternative skin-lightening agents to replace conventional chemicals that have adverse effects on the skin. However, the maximum size of these peptides is often limited by their low skin and cell penetration. To address this issue, we used our intra-dermal delivery technology (IDDT) platform to identify peptides with hypo-pigmenting and high cell-penetrating activity. Using our cell-penetrating peptides (CPPs) from the IDDT platform, we identified RMNE1 and its derivative RMNE3, "DualPep-Shine", which showed levels of α-Melanocyte stimulating hormone (α-MSH)-induced melanin inhibition comparable to the conventional tyrosinase inhibitor, Kojic acid. In addition, DualPep-Shine was delivered into the nucleus and regulated the gene expression levels of melanogenic enzymes by inhibiting the promoter activity of microphthalmia-associated transcription factor-M (MITF-M). Using a 3D human skin model, we found that DualPep-Shine penetrated the lower region of the epidermis and reduced the melanin content in a dose-dependent manner. Furthermore, DualPep-Shine showed high safety with little immunogenicity, indicating its potential as a novel cosmeceutical ingredient and anti-pigmentation therapeutic agent.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Péptidos de Penetración Celular , Melaninas , Melanocitos , Factor de Transcripción Asociado a Microftalmía , Proteínas del Tejido Nervioso , Preparaciones para Aclaramiento de la Piel , Pigmentación de la Piel , Transcripción Genética , Melaninas/antagonistas & inhibidores , Pigmentación de la Piel/efectos de los fármacos , Factor de Transcripción Asociado a Microftalmía/genética , Transcripción Genética/efectos de los fármacos , alfa-MSH/antagonistas & inhibidores , alfa-MSH/metabolismo , Humanos , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacología , Preparaciones para Aclaramiento de la Piel/química , Preparaciones para Aclaramiento de la Piel/farmacología , Melanoma Experimental , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/farmacología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/farmacología , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo , Epidermis/efectos de los fármacos , Epidermis/metabolismo
15.
J Mol Endocrinol ; 71(1)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37040537

RESUMEN

The melanocortin-4 receptor (MC4R) plays a critical role in regulating energy homeostasis. Studies on obesogenic human MC4R (hMC4R) variants have not yet revealed how hMC4R maintains body weight. Here, we identified a signaling profile for obesogenic constitutively active H76R and L250Q hMC4R variants transfected in HEK293 cells that included constitutive activity for adenylyl cyclase (AC), cyclic adenosine monophosphate (cAMP) response element (CRE)-driven transcription, and calcium mobilization but not phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) activity. Importantly, the signaling profile included impaired α-melanocyte-stimulating hormone-induced CRE-driven transcription but not impaired α-melanocyte-stimulating hormone-induced AC, calcium, or pERK1/2. This profile was not observed for transfected H158R, a constitutively active hMC4R variant associated with overweight but not obesity. We concluded that there is potential for α-melanocyte-stimulating hormone-induced CRE-driven transcription in HEK293 cells transfected with obesogenic hMC4R variants to be the key predictive tool for determining whether they exhibit loss of function. Furthermore, in vivo, α-melanocyte-stimulating hormone-induced hMC4R CRE-driven transcription may be key for maintaining body weight.


Asunto(s)
Calcio , alfa-MSH , Humanos , alfa-MSH/metabolismo , Receptor de Melanocortina Tipo 4/metabolismo , Células HEK293 , AMP Cíclico/metabolismo , Obesidad , Adenilil Ciclasas
16.
Lasers Surg Med ; 55(5): 490-502, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37051852

RESUMEN

OBJECTIVES: One symptom of hypertrophic scar (HTS) that can develop after burn injury is dyschromia with hyper- and hypopigmentation. There are limited treatments for these conditions. Previously, we showed there is no expression of alpha melanocyte stimulating hormone (α-MSH) in hypopigmented scars, and if these melanocytes are treated with synthetic α-MSH in vitro, they respond by repigmenting. The current study tested the same hypothesis in the in vivo environment using laser-assisted drug delivery (LADD). METHODS: HTSs were created in red Duroc pigs. At Day 77 (pre), they were treated with CO2 fractional ablative laser (FLSR). Synthetic α-MSH was delivered as a topical solution dissolved in  l-tyrosine (n = 6, treated). Control scars received LADD of  l-tyrosine only (n = 2, control). Scars were treated and examined weekly through Week 4. Digital images and punch biopsies of hyper, hypo-, and normally pigmented scar and skin were collected. Digital pictures were analyzed with ImageJ by tracing the area of hyperpigmentation. Epidermal sheets were obtained from punch biopsies through dispase separation and RNA was isolated. qRT-PCR was run for melanogenesis-related genes: tyrosinase (TYR), tyrosinase-related protein-1 (TYRP1), and dopachrome tautomerase (DCT). Two-way ANOVA with multiple comparisons and Dunnett's correction compared the groups. RESULTS: The areas of hyperpigmentation were variable before treatment. Therefore, data is represented as fold-change where each scar was normalized to its own pre value. Within the LADD of NDP α-MSH + l-tyrosine group, hyperpigmented areas gradually increased each week, reaching 1.3-fold over pre by Week 4. At each timepoint, area of hyperpigmentation was greater in the treated versus the control (1.04 ± 0.05 vs. 0.89 ± 0.08, 1.21 ± 0.07 vs. 0.98 ± 0.24, 1.21 ± 0.08 vs. 1.04 ± 0.11, 1.28 ± 0.11 vs. 0.94 ± 0.25; fold-change from pre-). Within the treatment group, pretreatment, levels of TYR were decreased -17.76 ± 4.52 below the level of normal skin in hypopigmented scars. After 1 treatment, potentially due to laser fractionation, the levels decreased to -43.49 ± 5.52. After 2, 3, and 4 treatments, there was ever increasing levels of TYR to almost the level of normally pigmented skin (-35.74 ± 15.72, -23.25 ± 6.80, -5.52 ± 2.22 [p < 0.01, Week 4]). This pattern was also observed for TYRP1 (pre = -12.94 ± 1.82, Week 1 = -48.85 ± 13.25 [p < 0.01], Weeks 2, 3, and 4 = -34.45 ± 14.64, -28.19 ± 4.98, -6.93 ± 3.05 [p < 0.01, Week 4]) and DCT (pre = -214.95 ± 89.42, Week 1 = -487.93 ± 126.32 [p < 0.05], Weeks 2, 3, and 4 = -219.06 ± 79.33, -72.91 ± 20.45 [p < 0.001], -76.00 ± 24.26 [p < 0.001]). Similar patterns were observed for scars treated with LADD of  l-tyrosine alone without NDP α-MSH. For each gene, in hyperpigmented scar, levels increased at Week 4 of treatment compared to Week 1 (p < 0.01). CONCLUSIONS: A clinically-relevant FLSR treatment method can be combined with topical delivery of synthetic α-MSH and l-tyrosine to increase the area of pigmentation and expression of melanogenesis genes in hypopigmented HTS. LADD of  l-tyrosine alone leads to increased expression of melanogenesis genes. Future studies will aim to optimize drug delivery, timing, and dosing.


Asunto(s)
Cicatriz Hipertrófica , Hiperpigmentación , Hipopigmentación , Láseres de Gas , Animales , Porcinos , Cicatriz Hipertrófica/tratamiento farmacológico , Cicatriz Hipertrófica/genética , Cicatriz Hipertrófica/patología , Tirosina , alfa-MSH/uso terapéutico , alfa-MSH/metabolismo , Preparaciones Farmacéuticas , Pigmentación , Hipopigmentación/tratamiento farmacológico , Hipopigmentación/genética , Hiperpigmentación/tratamiento farmacológico , Hiperpigmentación/genética , Láseres de Gas/uso terapéutico , Melaninas/metabolismo
17.
Blood Adv ; 7(13): 3199-3212, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-36920787

RESUMEN

Hematopoietic stem cells (HSCs) possess great self-renewal and multidirectional differentiation abilities, which contribute to the continuous generation of various blood cells. Although many intrinsic and extrinsic factors have been found to maintain HSC homeostasis, the precise regulation of hematopoiesis under stress conditions is poorly understood. In this study, we show that melanocortin receptor 5 (MC5R) is abundantly expressed in hematopoietic stem progenitor cells (HSPCs). Using an MC5R knockout mouse model, we observed that it is not essential for steady-state hematopoiesis. Interestingly, the levels of α-melanocyte stimulating hormone (α-MSH), an important subtype of melanocortin, were elevated in the serum and bone marrow, and the expression of MC5R was upregulated in HSPCs from mice after irradiation. MC5R deficiency aggravates irradiation-induced myelosuppression because of impaired proliferation and reconstitution of HSCs. Further investigation revealed that the melanocortin/MC5R axis regulates the proliferation of HSCs by activating the PI3K/AKT and MAPK pathways. More importantly, α-MSH treatment can significantly accelerate hematopoietic recovery in irradiated mice. In conclusion, our data demonstrate that the melanocortin/MC5R axis plays a crucial role in regulating HSC proliferation under stress, thus providing a promising strategy to promote hematopoietic regeneration when suffering from injury.


Asunto(s)
Fosfatidilinositol 3-Quinasas , alfa-MSH , Animales , Ratones , alfa-MSH/farmacología , alfa-MSH/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Células Madre Hematopoyéticas/metabolismo , Receptores de Melanocortina/metabolismo , Ratones Noqueados , Radiación Ionizante , Proliferación Celular
18.
An Acad Bras Cienc ; 95(1): e20211581, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36946809

RESUMEN

Ectothermic animals present melanin-containing cells in their integument and viscera. Besides cutaneous melanophores, amphibians have melanomacrophages in the hepatic parenchyma and melanocytes in the viscera, which are also present in their testicular stroma. The native melanocyte stimulating hormone (α-MSH) is the main hormone that modulates the color change in melanophores. However, we still know too little about how the α-MSH acts in vivo on visceral melanin-containing cells. In this study, we collected 30 adult males of Physalaemus nattereri (Anura, Leptodactylidae) to evaluate the short-term effects of α-MSH on melanophores, melanocytes and melanomacrophages under light microscopy. For this, we injected 0.05 ml of a single intraperitoneal dose containing 2.5x10-7 mmol/10g of α-MSH, diluted in ringer solution, in five experimental groups with five individuals each one. The different groups were analyzed after 1, 3, 6, 12 and 24h. The control group with five other individuals received only 0.05 ml of ringer solution. The skin pigmentation increased quickly after animals received the hormone α-MSH with the consequent darkening of the body (body darkness). Melanophores, melanocytes and melanomacrophages responded similarly to the test, with an increase in the area containing melanin. However, melanophores and melanomacrophages reached their darkest pigmentation in a shorter period of time in comparison to the testicular melanocytes, probably due to specific metabolic characteristics of each organ. Thus, we verified that the three types of cells, although present in different organs, are responsive to the native hormone α-MSH, which enables us to treat them as a pigmentary system.


Asunto(s)
Melaninas , alfa-MSH , Masculino , Animales , Melaninas/metabolismo , Melaninas/farmacología , alfa-MSH/farmacología , alfa-MSH/metabolismo , Anuros , Solución de Ringer/farmacología , Piel
19.
Domest Anim Endocrinol ; 83: 106785, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36745973

RESUMEN

A chemiluminescent immunoassay is commonly employed to measure adrenocorticotrophic hormone (ACTH) concentrations to assist pituitary pars intermedia dysfunction diagnosis. In a previous study, seasonally-dependent assay cross-reactivity to endogenous equine corticotropin-like intermediate lobe peptide (CLIP, ACTH 18-39) was suspected. The present study aimed to demonstrate binding of endogenous equine CLIP to the capture antibody of the ACTH chemiluminescent immunoassay. Liquid chromatography - mass spectrometry (LCMS) methods were optimised to identify selected ions from synthetic human ACTH, α-melanocyte stimulating hormone (α-MSH, ACTH 1-17) and CLIP. Synthetic ACTH and CLIP bound to the capture antibody of the chemiluminescent ACTH assay, but α-MSH did not. Equine endogenous CLIP was detected by LCMS in pony plasma taken in the autumn and could be eluted from the capture antibody of the ACTH chemiluminescent immunoassay. Further research is required to enable quantification of CLIP. Equine CLIP may alter measured ACTH concentrations in vivo.


Asunto(s)
Hormona Adrenocorticotrópica , alfa-MSH , Caballos , Animales , Humanos , Péptido de la Porción Intermedia de la Adenohipófisis Similar a la Corticotropina/metabolismo , alfa-MSH/metabolismo , Anticuerpos , Hipófisis/metabolismo , Hormonas Estimuladoras de los Melanocitos/metabolismo
20.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36614262

RESUMEN

Pinostrobin is a dietary flavonoid found in several plants that possesses pharmacological properties, such as anti-cancer, anti-virus, antioxidant, anti-ulcer, and anti-aromatase effects. However, it is unclear if pinostrobin exerts anti-melanogenic properties and, if so, what the underlying molecular mechanisms comprise. Therefore, we, in this study, investigated whether pinostrobin inhibits melanin biosynthesis in vitro and in vivo, as well as the potential associated mechanism. Pinostrobin reduced mushroom tyrosinase activity in vitro in a concentration-dependent manner, with an IC50 of 700 µM. Molecular docking simulations further revealed that pinostrobin forms a hydrogen bond, as well as other non-covalent interactions, between the C-type lectin-like fold and polyphenol oxidase chain, rather than the previously known copper-containing catalytic center. Additionally, pinostrobin significantly decreased α-melanocyte-stimulating hormone (α-MSH)-induced extracellular and intracellular melanin production, as well as tyrosinase activity, in B16F10 melanoma cells. More specifically, pinostrobin inhibited the α-MSH-induced melanin biosynthesis signaling pathway by suppressing the cAMP-CREB-MITF axis. In fact, pinostrobin also attenuated pigmentation in α-MSH-stimulated zebrafish larvae without causing cardiotoxicity. The findings suggest that pinostrobin effectively inhibits melanogenesis in vitro and in vivo via regulation of the cAMP-CREB-MITF axis.


Asunto(s)
Melaninas , Melanoma Experimental , Animales , Melaninas/metabolismo , Monofenol Monooxigenasa/metabolismo , alfa-MSH/farmacología , alfa-MSH/metabolismo , Simulación del Acoplamiento Molecular , Pez Cebra/metabolismo , Transducción de Señal , Factor de Transcripción Asociado a Microftalmía/metabolismo , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA